
DAQ I/O Modules
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Exemplified by using NI USB-6008 I/O Module

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• How can we use NI Hardware with Python?
• What is DAQ and I/O Modules?
• NI-DAQmx
• nidaqmx Python API
• Python Examples
– Analog Out (Write) - AO
– Analog In (Read) - AI
– Digital Out (Write) - DO
– Digital In (Read) - DI

Contents

Note! The Python Examples provided will
work for all NI-DAQ Devices using the NI-
DAQmx Driver, which is several hundreds

different types. We will use the I/O Module
or DAQ Device NI USB-6008 as an Example

• NI is a company that manufacture and sell both Hardware and
Software

• The are most famous for their LabVIEW software
• LabVIEW is popular Graphical Programming Language
• Typically you use LabVIEW in combination with NI DAQ

Hardware, but the NI-DAQmx can also be used from C, C#,
Python, etc.

• Control NI DAQ Device with Python and NI DAQmx
– https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0
00000P8o0SAC

How can we use NI Hardware
with Python?

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8o0SAC

• In this Tutorial we will use Python and
not LabVIEW
• But if you want to learn more about

LabVIEW, you may take a look at my
LabVIEW resources:
• https://halvorsen.blog/documents/prog

ramming/labview/labview.php

LabVIEW

https://halvorsen.blog/documents/programming/labview/labview.php

NI DAQ Hardware
TC-01 Thermocouple

USB-6001

myDAQ

cDAQ

Some Examples

NI-DAQmx
Hardware Driver

Note! The Python Examples provided will work for all NI-DAQ Devices using the NI-DAQmx Driver, which is several hundreds different types

USB-6008

USB-600x
• NI has many DAQ devices (or I/O Modules) that

can be used together with NI-DAQmx Python API
• Examples of low-cost USB DAQ Devices from NI:

USB-6001, .. ,USB-6008, USB-6009

USB-6001
USB-6008

… …

NI USB-6008
We will use NI USB-6008 in our examples I/O Pins

http://www.ni.com/en-no/support/model.usb-6008.html

http://www.ni.com/en-no/support/model.usb-6008.html

NI USB-6008
• The USB-6008 is a low-cost, multifunction DAQ device.
• It offers analog I/O, digital I/O, and a 32-bit counter.
• The USB-6008 provides basic functionality for applications such as

simple data logging, portable measurements, and academic lab
experiments.

• You can easily connect sensors and signals to the USB-6008 with
screw-terminal connectivity.

• 8 AI Single-ended or 4 AI Differential (12-Bit, 10 kS/s)
• 2 AO (150 Hz)
• 12 DIO (you can choose DI or DO)
http://www.ni.com/pdf/manuals/375295c.pdf

http://www.ni.com/pdf/manuals/375295c.pdf

NI DAQ Device with Python
How to use a NI DAQ Device with Python

NI DAQ
Hardware

NI-DAQmx

Python

nidaqmx Python Package

In this Tutorial we will use USB-6008

Hardware Driver Software

Python Programming Language

Python Application Your Python Program

Python Library/API for Communication with NI DAQmx Driver
Free

Free

Free

• To read sensor data you typically need a
DAQ (Data Acquisition) device
connected to you PC
• You can alos use devices like Arduino ,

Raspberry Pi, etc.
• In all cases you will typically need to

install a driver from the vendor of the
DAQ device or the sensor you are using

Data Acquisition (DAQ)

A DAQ System consists of 4 parts:
• Physical input/output signals, sensors
• DAQ device/hardware
• Driver software
• Your software application (Application

Software) - in this case your Python
application

DAQ System

DAQ System

Analog Signals

Digital Signals

Sensors

Analog IO

Digital IO

Application

Software

Hardware DriverUSB, etc.

Input/Output Signals

Data Acquisition
Hardware

(Analog/Digital
Interface) PC

I/O Module
Analog Signals

Digital Signals

Analog Sensors Analog IO

Digital IO

I/O Module

Sensors with Digital Interface (e.g., SPI, I2C)

Analog Input (AI)
Analog Output (AO)

Digital Input (DI)
Digital Output (DO)

0 − 5𝑉 or 0 − 10𝑉

True

False

Digital Signals

𝑘 = 1

𝑻𝒔 = Sampling Time
𝑘 = Discrete Time

𝑡 = 𝑘𝑇"
𝑘

A computer can only deal with discrete signals

𝑘 = 2 𝑘 = 3 𝑘 = 4 …𝑘 = 0
𝑡 = 0 𝑡 = 𝑇" 𝑡 = 2𝑇" 𝑡 = 3𝑇" 𝑡 = 4𝑇"

𝑡 = Continuous Time

You typically log data at specific intervals

𝑇"

The sampling Time (𝑇") is the time between 2 logged values

• Here you find more information,
resources, videos and examples
regarding DAQ:
• https://www.halvorsen.blog/docume

nts/technology/daq

DAQ

https://www.halvorsen.blog/documents/technology/daq

• NI-DAQmx is the software you use to communicate
with and control your NI data acquisition (DAQ) device.

• NI-DAQmx supports only the Windows operating
system.

• Typically you use LabVIEW in combination with NI DAQ
Hardware, but the NI-DAQmx can also be used from C,
C#, Python, etc.

• The NI-DAQmx Driver is Free!
• Visit the ni.com/downloads to download the latest

version of NI-DAQmx

NI-DAQmx

http://www.ni.com/downloads/

Measurement & Automation
Explorer (MAX)

Measurement & Automation Explorer (MAX)
is a software you can use to configure and
test the DAQ device before you use it in
Python (or other programming languages).

MAX is included with NI-DAQmx software

With MAX you can make sure your DAQ device works as expected before you start using it in your Python program.
You can use the Test Panels to test your analog and digital inputs and outputs channels.

Measurement & Automation
Explorer (MAX)

Rename Device Name:

You can change the
Name of the Device by
right-clicking and select

“Rename”

You will use this Device Name
inside your Python codeThe default Name is “Dev1”

• Python Library/API for Communication with NI
DAQmx Driver

• Running nidaqmx requires NI-DAQmx or NI-
DAQmx Runtime

• Visit the ni.com/downloads to download the
latest version of NI-DAQmx

• nidaqmx can be installed with pip:
pip install nidaqmx

• https://github.com/ni/nidaqmx-python

nidaqmx Python API

http://www.ni.com/downloads/
https://github.com/ni/nidaqmx-python

nidaqmx Python Package
Installation

nidaqmx Python Package
MAX

You can change the
Name of the Device by
right-clicking and select

“Rename”

Python Examples

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Examples
Using a DAQ device we have 4 options
• Analog Out (Write) - AO
• Analog In (Read) - AI
• Digital Out (Write) - DO
• Digital In (Read) - DI
We will show some basic examples in each of
these categories

Python Examples
• You can easily extend this examples to make them suit

your needs.
• Typically you need to include a while loop where you

write and/or read from the DAQ device inside the loop,
• E.g. read values from one or more sensors, e.g., a

Temperature sensor that are connected to the DAQ
device

• You may want to create a control system reading the
process value and then later write the calculated control
signal (e.g. using a PID controller) back to the DAQ device
and the process

Analog Out (Write)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Analog Out (Write)
• Note! The USB-6008 can only output a voltage

signal between 0 and 5V
• The USB-6008 has 2 Analog

Out Channels:
– AO0
– AO1

Analog Out (Write)
import nidaqmx

task = nidaqmx.Task()
task.ao_channels.add_ao_voltage_chan('Dev1/ao0','mychannel',0,5)
task.start()

value = 2
task.write(value)

task.stop()
task.close()

You can, e.g., use a Multimeter in order to check if the the program outputs the correct value

Hardware Setup and Testing

AO0

task.ao_channels.add_ao_voltage_chan('Dev1/ao0','mychannel',0,5)

value = 2
task.write(value)

To PC

USB-6008

Multimeter

Analog In (Read)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Analog In (Read)
USB-6008 has
• 8 AI Referenced Single Ended (RSE)

Analog Inputs Channels
• or 4 AI Differential Analog

Inputs Channels

The Voltage Range is −10𝑉 − 20𝑉

0𝑉 − 5𝑉 is default

Default

Analog In (Read)
• In order to test your application you can connect, e.g., a

battery to the Analog Input channel used in the
program.

• Before you connect the battery to the DAQ device you
can check the Voltage Level using a Multimeter.

• Another test is to combine the Analog Write and
Analog Read examples and wire the Analog Write
channel directly to the Analog Read channel used in the
program, this is a so-called “Loop-back Test”.

Analog In (Read)
import nidaqmx

task = nidaqmx.Task()
task.ai_channels.add_ai_voltage_chan("Dev1/ai0")
task.start()

value = task.read()
print(value)

task.stop
task.close()

Hardware Setup and Testing

AI0

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

value = task.read()
print(value)

Hardware Setup and Testing

AI0

task.ai_channels.add_ai_voltage_chan("Dev1/ai0", min_val=0, max_val=10)

value = task.read()
print(value)

Analog In (Read)
import nidaqmx

task = nidaqmx.Task()
task.ai_channels.add_ai_voltage_chan("Dev1/ai0", min_val=0, max_val=10)
task.start()

value = task.read()
print(value)

task.stop
task.close()

9V Battery0𝑉 − 5𝑉 is default

Loopback Test (Out + In)
Connect Analog Out connectors on DAQ device to the Analog In connectors:

Loopback Test - Example
import nidaqmx

task = nidaqmx.Task()
task.ao_channels.add_ao_voltage_chan('Dev1/ao0','mychannel',0,5)
task.start()

value = 2
task.write(value)

task.stop()
task.close()

import nidaqmx

task = nidaqmx.Task()
task.ai_channels.add_ai_voltage_chan("Dev1/ai0")
task.start()

value = task.read()
print(value)
task.stop
task.close()

1. First run this Python code:

2. Then run this Python code:

Analog Out

Analog In

Loopback Test – Example2
import nidaqmx

task_write = nidaqmx.Task()
task_write.ao_channels.add_ao_voltage_chan('Dev1/ao0','mychannel',0,5)
task_write.start()

task_read = nidaqmx.Task()
task_read.ai_channels.add_ai_voltage_chan("Dev1/ai0")
task_read.start()

value = 4
task_write.write(value)

value = task_read.read()
print(value)

task_write.stop()
task_write.close()

task_read.stop()
task_read.close()

Analog Out + analog In
in the same program

Lo
op

ba
ck

 Te
st

–

Ex
am

pl
e3

import nidaqmx
import time

task_write = nidaqmx.Task()
task_write.ao_channels.add_ao_voltage_chan('Dev1/ao0','mychannel',0,5)
task_write.start()

task_read = nidaqmx.Task()
task_read.ai_channels.add_ai_voltage_chan("Dev1/ai0")
task_read.start()

start=0; stop=6; increment=1

for k in range(start, stop, increment):
value = k
if value>5:

value=5
task_write.write(value)
time.sleep(1)

value = task_read.read()
print(round(value,2))

task_write.stop()
task_write.close()

task_read.stop()
task_read.close()

Analog In – RSE vs Differential
USB-6008 has
• 8 AI Referenced Single Ended (RSE)

Analog Inputs Channels
• or 4 AI Differential Analog

Inputs Channels

Analog In – RSE vs Differential
AI Referenced Single Ended (RSE) - 8 channels

AI Differential Analog - 4 channels

AI0
AI0

The Analog Channels have common ground

Analog In with RSE
import nidaqmx

from nidaqmx.constants import (
TerminalConfiguration)

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0",
terminal_config=TerminalConfiguration.RSE)

task.start()

value = task.read()
print(value)
task.stop()
task.close()

Analog In with Differential
import nidaqmx

from nidaqmx.constants import (
TerminalConfiguration)

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0",
terminal_config=TerminalConfiguration.DIFFERENTIAL)

task.start()

value = task.read()
print(value)

task.stop()
task.close()

Digital I/O

Hans-Petter Halvorsen

https://www.halvorsen.blog

Digital I/O

• 12 Digital Channels
– Port 0 Digital I/O Channels 0 to 7
– Port 1 Digital I/O Channels 0 to 3

• You can individually configure each signal as an input
or output.

Digital I/O
Dev1/port0/line0
Dev1/port0/line1
Dev1/port0/line2
Dev1/port0/line3
Dev1/port0/line4
Dev1/port0/line5
Dev1/port0/line6
Dev1/port0/line7

Dev1/port1/line0
Dev1/port1/line1
Dev1/port1/line2
Dev1/port1/line3

port0

port1

Digital I/O

P0.<0..7> Port 0 Digital I/O Channels 0 to 7 — You can individually configure each signal as
an input or output.

P1.<0..3> Port 1 Digital I/O Channels 0 to 3 — You can individually configure each signal as
an input or output

Dev1/Port0/line0:7

Dev1/Port1/line0:3

Digital Out (Write)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Digital Out (Write)
import nidaqmx

task = nidaqmx.Task()
task.do_channels.add_do_chan("Dev1/port0/line0")
task.start()

value = True
task.write(value)

task.stop
task.close()

value = True value = False

We measure ~5𝑉 using a Multimeter We measure ~0𝑉 using a Multimeter

Digital Out (Write)

+

-
We test with
a Multimeter

import nidaqmx

task = nidaqmx.Task()
task.do_channels.add_do_chan("Dev1/port0/line0")
task.start()

value = True
task.write(value)

task.stop
task.close()

import nidaqmx

task = nidaqmx.Task()
task.do_channels.add_do_chan("Dev1/port0/line0")
task.start()

value = False
task.write(value)

task.stop
task.close()

True

False

Di
gi

ta
l O

ut
 –

Fo
r L

oo
p import nidaqmx

import time

task = nidaqmx.Task()
task.do_channels.add_do_chan("Dev1/port0/line0")
task.start()

value = True

N = 10
for k in range(N):

print(value)
task.write(value)
value = not value
time.sleep(5)

task.stop
task.close()

Digital I/O
Dev1/port0/line0
Dev1/port0/line1
Dev1/port0/line2
Dev1/port0/line3
Dev1/port0/line4
Dev1/port0/line5
Dev1/port0/line6
Dev1/port0/line7

Dev1/port1/line0
Dev1/port1/line1
Dev1/port1/line2
Dev1/port1/line3

port0

port1

M
ul

tip
le

 D
ig

ita
l O

ut import nidaqmx
import time

from nidaqmx.constants import (
LineGrouping)

task = nidaqmx.Task()
task.do_channels.add_do_chan("Dev1/port0/line0:7","MyDOChannels",

line_grouping=LineGrouping.CHAN_PER_LINE)
task.start()

data = [True,False,True,True,False,True,False,True]
task.write(data)
time.sleep(5)

data[1] = True
task.write(data)

task.stop
task.close()

Digital In (Read)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Digital In (Read)
import nidaqmx

task = nidaqmx.Task()
task.di_channels.add_di_chan("Dev1/port0/line1")
task.start()

value = task.read()
print(value)

task.stop
task.close()

Loopback Testing
Digital Out (P0.0)

Digital In (P0.1)

Di
gi

ta
l O

ut
 +

 In
import nidaqmx

task = nidaqmx.Task()
task.do_channels.add_do_chan("Dev1/port0/line0")
task.start()

value = False #Change between True and False
task.write(value)

task.stop
task.close()

task = nidaqmx.Task()
task.di_channels.add_di_chan("Dev1/port0/line1")
task.start()

value = task.read()
print(value)

task.stop
task.close()

DO

DI

In this example we
connect DO0 and DI1

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

